SPS Bridge Decks for New Bridges & Rehabilitating Existing Bridges

Contents

- Introduction
- SPS Bridge Decks
- Engineering & Testing
- Typical Bridge Projects

SPS Team

Intelligent Engineering

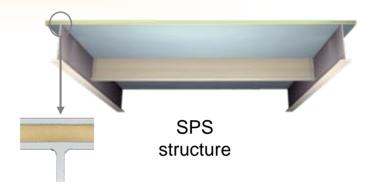
- Owner of SPS technology
- Responsible for commercialising SPS via local partners
- Support design and approval of SPS structures
- Incorporated in 1996
- Offices in Europe, North America, Singapore & Middle East
- Global delivery and partner support teams

BASF - Elastogran

- Supply SPS polyurethane
- World's largest chemical company
- Leading developers of polyurethane technologies
- Dedicated team supports development and testing of SPS
- Regional offices to support chemical processes

SPS: Sandwich Plate System

Structural Composite


Alternative to concrete & stiffened steel
 Applications in civil & maritime structures

Key Benefits for Construction

- Lightweight
- Fast erection Shorter schedules
- Maximizes offsite construction
- Minimizes logistics & risks
- Easy to demount and reuse

History

- Developed in 1993
- Over 200 projects & 200,000m² in service
- Used in 30 countries
- Ships, oil-rigs, bridges, stadium & buildings
- Approved by major global regulators

Conventional stiffened steel structure

Conventional concretesteel composite structure

SPS Applications and Benefits

Construction and Civil Engineering

- Bridges, stadia, flooring systems, blast protection
- Controls fatigue and vibration
- 75% lighter than concrete
- Accurate factory fabricated panels
- Reduces wet-work on site and weather delays
- De-risks and accelerates schedule

Shipbuilding

- Any component of ships or offshore structures
- Simplified more robust structures
- 40% less labour, 50% less welding, 20% less coating
- Superior performance & reduced maintenance

Strengthening and Reinstatement

- Ship structures and bridge decks
- Permanent, better than new structure
- Very fast process minimises disruption

16 Years of Development, Testing & Certification

Over 12,000 tests completed

Material Characterisation

 Mechanical properties, thermal properties, physical characteristics, production

Composite Performance

- Bond test programs (performance & longevity)
- Limit state performance at full-scale
- Fire and toxicity tests (SOLAS, BRE, UL)

Speciality and Application Specific Testing

 Blast, ballistic, high energy impacts, dynamics, acoustics, low temperature

University & Research Institute Tests

USA, Canada, UK, Germany, Netherlands, China

Approvals

ClassNK

Field	Application	Approval	Body			
Civil	Bridge Decks	New bridge decksReplacement decksDeck reinstatement	Berliner Verkehrsbetriebe City of Edmonton, Alberta Ministère du Transports Québec Nordrein Westfalen Port Hope Municipality Texas DoT UK Highways Agency			
Olvii	Terraces and Floors	Product certification to national building codes	BRE Global New York City OTCR US International Code Council			
		Fire resistance rating	BRE Global - Europe Underwriters Laboratory - US			
		Project approvals	Arup, Buro Hapold, WSP			
	All	PU materials approval	ABS, BV, CCS, DNV, GL, KR, LR, NKK, RMRS			
Maritime	Ship structures	Rules for construction	CCS, LR (issued) ABS, BV, DNV, GL in progress			
	Various: ship and offshore	Project approvals (185 since 1999)	ABS, BV, CCS, CRS, DNV, GL, IRS, KR, LR, NKK, RINA, RMRS, TC, USCG			

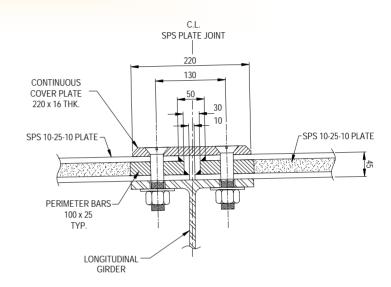
Contents

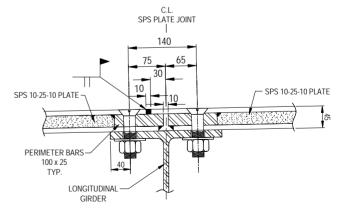
- Introduction
- SPS Bridge Decks
- Engineering & Testing
- Typical Bridge Projects

New or replacement bridge decks

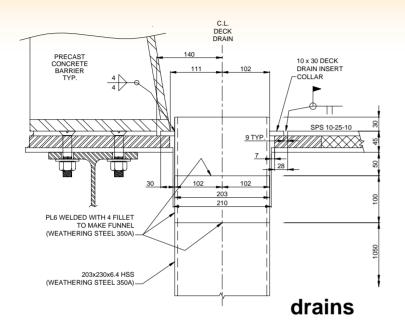
- Simple flat structural plates
- Bolted to supporting girders & stringers
- All bolted construction no field welding
- Weathering or standard steel
- Up to 70% lighter than concrete decks
- Work compositely with superstructure
- Uses conventional wearing surfaces
- Simple design
- Single trade for deck & superstructure
- High quality factory production
- Fast installation with immediate capacity
- No delays from concrete curing
- Short, medium & long span bridges as well as movable & pedestrian

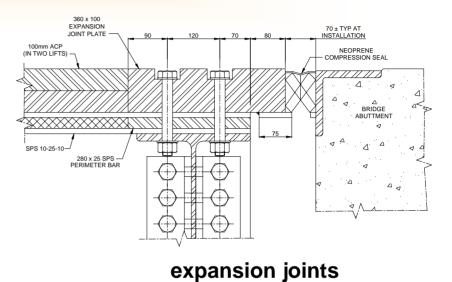
Benefits

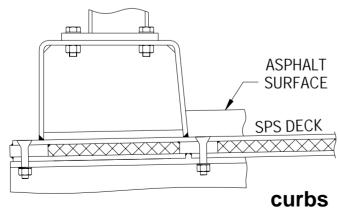

- Fewer and lighter girders
- Longer spans
- Fewer piers, pile sizes and pile caps
- Faster erection and lighter equipment
- Reduced total bridge cost
- Lower through life costs
- Natural long life



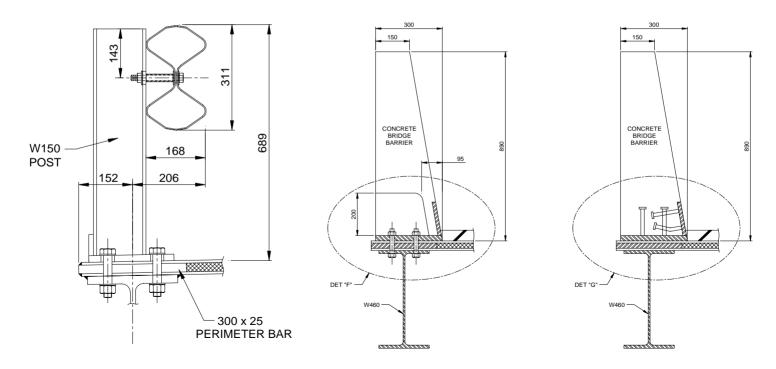
Connection to girders or stringers


- SPS Bridge Decks bolted direct to top flange of girder or stringer
- Decks work compositely with superstructure (in tension & compression)
- Upper splice plate provides continuous action
- Bolted connections have fatigue category B
- All bolting through sealed perimeter bars
- Factory welds not fatigue critical as supported by flange and transverse load taken by bolts
- Crowns, super-elevations, cross-fall, skew and vertical or horizontal curves are readily accommodated





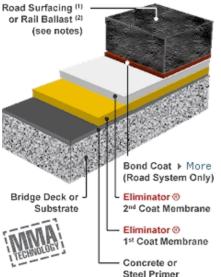
Pre-engineered details



Connections for details incorporated in prefabrication

Barrier options

- Crash barrier connections: Meet CHBDC: performance level 2 and NCHRP 350 test level 4 (Posts bolted to the edge or centre of the SPS deck)
- Attached through girder or edge section supported by discrete cantilever
- All typical bridge attachments possible, such as crash barriers, signs and lamps
- Attached using industry standard steel connection techniques



Coatings & wearing surfaces

Thick or thin wearing surface options:

- Asphalt + Stirling Lloyd membrane
- Thin wearing surface polyurethane + bauxite grit (RSClare Bimagrip 6mm thick, 2kg/m², 2hr cure)
- Increased life due to reduced curvatures
- Easy repair and replacement as required

Prefabricated SPS Bridge Decks Fabrication

5

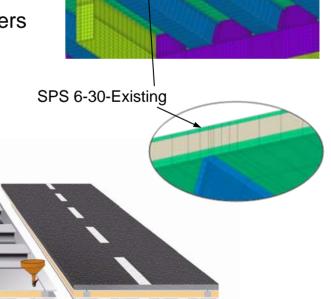
- Parametric CAD modules
- Dedicated production line
- Fast efficient CNC manufacturing
- Excellent dimensional control
- Maximum use of factory integrated details

Erection / installation

Bridge Erection

- 1. Erect bridge girders
- 2. Locate SPS Bridge Decks
- 3. Bolt deck plates to girders
- 4. Erect barriers and signage
- 5. Complete coatings

- Fast erection schedules
- Light equipment required
- Single trade erection
- Simple attachment details
- Bridge open 2 hours after last coating applied



SPS Overlay for Bridge Decks

Strengthening & reinstatement of orthotropic bridge decks

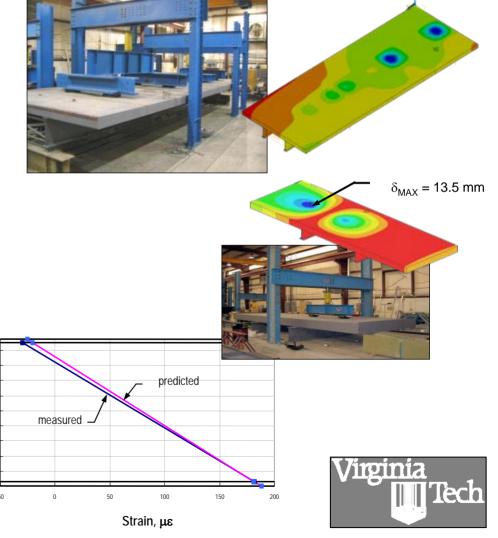
- Orthotropic deck strengthening without removal and with limited traffic disruption
- Weight and thickness neutral
- New steel plates applied above existing deck using SPS Overlay composite
- Fast process with only partial bridge closure required
- Asphalt thickness reduced
- Reduces fatigue stresses in orthotropic bridge decks
- Increases distribution of wheel loads across stiffeners
- Increases service life of bridge deck
- Increases service life of wearing surface

SPS Overlay for Bridge Decks

Strengthening & reinstatement of orthotropic bridge decks

September 27, 2011 Page # 17

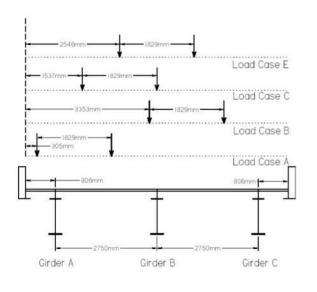
Contents


- Introduction
- SPS Bridge Decks
- Engineering & Testing
- Typical Bridge Projects

Static performance

- Overall deflections are small (60% less than 1mm)
- Local deflections at CHBDC serviceability load are L/331
- Tests show composite action is achieved (deflections 2.9x lower)
- Field tests show close correlation to predicted results
- No plastification of SPS at test with 118 tonne load from lab actuator

-425


-1025 -1125 -1225

Depth, mm

Load distribution & dynamic load allowance

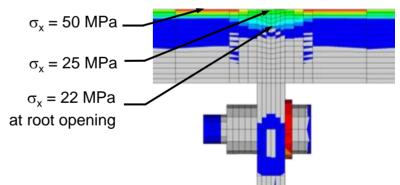
- SPS Bridge Decks are stiff and distribute loads across structure well
- Standard specified lateral load distribution factors for a concrete deck on steel girders are conservative for SPS Bridge Decks for exterior and interior girders
- AASHTO dynamic load allowance of 33% and CHBDC value of 30% are conservative for SPS Bridge Decks
- When the tires are not above a girder, 40% DLA is recommended

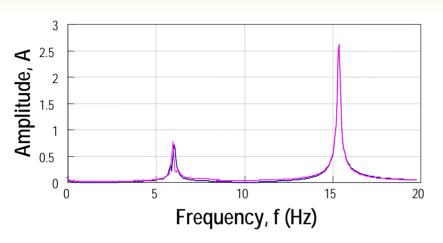
Tests confirm distribution

Girder	Load Case	Test Results		Spec	Very stiff			
		DF_{Δ}	DF _ε	Standard	LRFD	Lever Rule	CHBDC	deck
Exterior	Α	0.654	0.676	0.814	0.849	0.849	0.772	0.758
Interior	Е	0.380	0.427	0.644	0.668	0.668	0.638	0.333
Exterior	A+B	0.850	0.894	0.885	0.885	0.885	0.810	0.925
Interior	A+B	0.688	0.676	0.820	0.819	0.819	0.823	0.666

Response	Load Case	B (Grd. C)	Load Case	C (Grd. A)	Load Case E (Grd. B)		
	Average %	Coef. of variation	Average %	Coef. of variation	Average %	Coef. of variation	
Δ	12	0.3	26	0.2	42	0.5	
3	6	0.6	24	0.4	32	0.6	

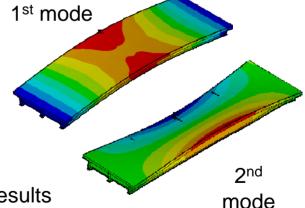
Fatigue performance





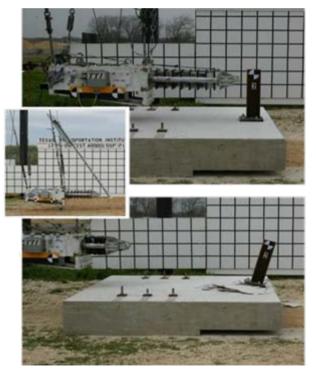
- Fatigue performance of SPS governed by joints not SPS composite
- Fatigue class of the SPS bridge deck joints established by fatigue tests
- Stress ranges conducted for FLS design cases and higher stress ranges
- Joints tested to a minimum of 10 million cycles

Vibration characteristics



Vibration Mode	Natural Fre	quency, Hz	Test/Predicted	
	Measured	Predicted	Ratio	
1	5.8	5.7	0.98	
2	6.0	5.9	0.98	
3	15.3	11.6	0.76	

modal hammer and force plate


- Close correlation between measured and predicted results
- Natural frequency of bridge deck panels meet design codes
- Elastomer dampens vibrations and reduces structural borne noise

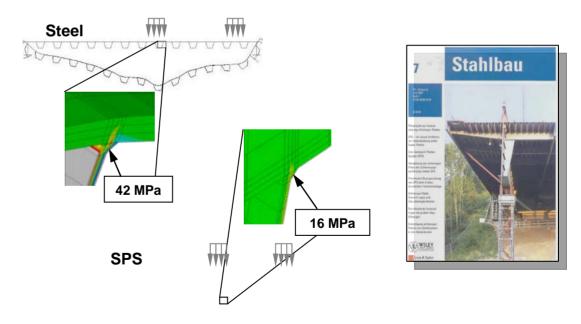
Crash barrier performance

- Posts bolted to steel brackets on SPS Bridge Decks
- Stiffeners below SPS for local strengthening (if not connected to beam flanges)
- Pendulum tests by Texas Transportation Institute (TTI)
- Crash barriers on SPS achieve TL4 performance level
- SPS deck undamaged

Crash barrier bolted to SPS Bridge Deck

SPS Overlay for Bridge Decks

Testing, verification and approvals



- Full scale pilots, lab testing, FEA analysis
- Static, dynamic, fatigue and ultimate load tests
- Field installations verifie quality control, durability, robustness

- reduced critical stresses
 - increased fatigue life

SPS Bridge Decks

Design rules

- Guidelines for the design of SPS Bridge Decks (specs v. girder spacing)
- Designed to satisfy fatigue, serviceability and ultimate limit states
- Direct calculation of deflection of SPS plate under a single wheel load including transverse shear deformation through the core
- Design tables for welded and bolted splice connections between plates
- Connection details for crash barriers, drains, expansion joints
- Available for US, Canadian & UK codes

	Spacing Range mm	Longitudinal Girder				SPS	
SPS Plate/ Girder Combination		Spacing mm	Min Flange Thickness, mm	b/t ratio	Class ²	Thickness, mm	Weight ¹ , kg/m ²
1	s ≤ 2200	1800	16	9.4	3	8-30-8	190
2		2000					188
3		2200					186
4	2200 ≤ s ≤ 2400	2200	16	9.4	3	10-25-10	207
5	2200 ≤ S ≤ 2400	2400					206
6	2400 < s ≤ 2800	2600	16	9.4	3	10-30-10	214
7		2800					213
8	2800 < s ≤ 3000	2600	25	7.5	1	12-25-12	236
9		2800					235
10		3000					234

Contents

- Introduction
- SPS Bridge Decks
- Engineering & Testing
- Typical Bridge Projects

Cedar Creek - IBRC with Texas DoT

- Replace girders and deck with new construction
- SPS Deck with integrated longitudinal girders (composite action)
- 2-Lane undivided rural road

10'-0"

SEE DET "A" –

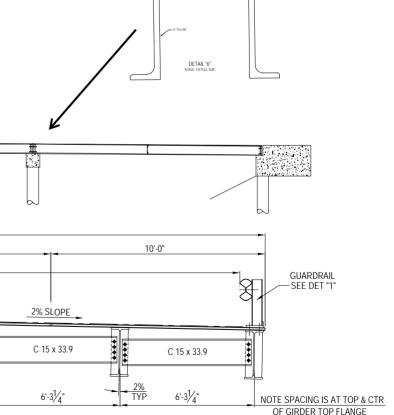
SPS 516" - 1" - 5/16"

C 15 x 33.9

6'-31/4"

- Clear roadway is 30'
- Three 50' spans with expansion joints

WEB 22.5" x 1/2" PL


TOP FL 14" x 3/4" PL

BTM FL 14" x 1" PL

SEE

C 15 x 33.9

6'-31/4"

ELEVATION OF BRIDGE

SCALE 1/16" = 1 FT

32'-41/4"

30'-0"

CLEAR ROADWAY

CL OF

C 15 x 33.9

6'-31/4"

6'-21/2"

SEE DET "2"

6'-21/9"

2% SLOPE

Cedar Creek - IBRC with Texas DoT

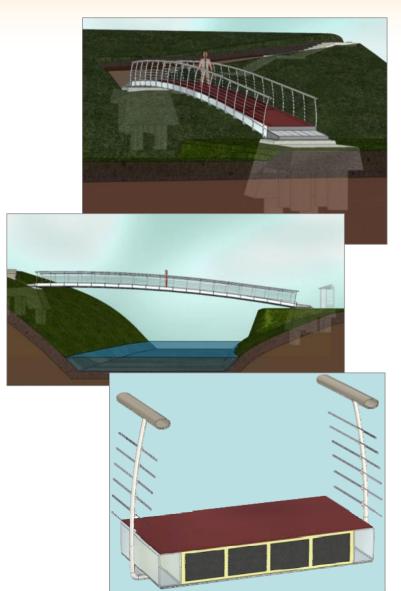
Dawson Bridge

- 5 span truss bridge (43-43-43-76-30m)
- Transverse floor beams are constant depth
- Roadway profile built up from longitudinal stringers supporting a reinforced concrete deck applied over a wood base
- Deck degraded must be replaced
- Concrete deck too heavy for existing truss structure
- Short summer close to complete replacement of deck and renovation of truss

Area 1,826m²

Date Summer, 2010
Location Edmonton, Canada
Owner City of Edmonton
Engineer Cohos Evamy
Contractor Concreate

M6 Footbridges – UK Highways Agency



- Replacement of degraded existing precast concrete plank decks
- SPS 5-20-5 plates with stainless steel
 AISI 304L faceplates
- SPS: 115 kg/m² (concrete: 300 kg/m²)
- SPS plates are supported on existing concrete girders and abutments
- RHS on underside of SPS plates to match the existing elevations
- Thin Bimagrip wearing surface
- Designed to British Standards.
- Installation for 2 bridges completed in single night closure of freeway

SPS Pedestrian Bridge Scheme

- Lighter, simpler and more slender
- Single span pedestrian bridge
- 26m span, 1.5m wide, 164mm deep
- SPS 6-154C-6 deck with integral girders
- Lightweight deck and girders 200kg/m² (approx 30% lighter than concrete)
- Low deflections and acceleration
- Quiet bridge
- Tough wearing surface
- Factory production delivers high quality and increased production efficiency
- Single lift erection & simple connections
- Improved build & through-life economics

Deck strengthening - Krefeld Bridge - Germany

Existing Bridge

- 2 lane highway bridge
- Original steel orthotropic deck structure constructed in 1970's
- Up to 100,000 vehicles / day

SPS Overlay

- SPS 6-30-Existing Overlay applied across full bridge
- 800m² in 6 weeks
- 70m long by 11.5m wide
- 50 Cavities
- Fatigue life increased by 32 times

Deck strengthening from below - Berlin U-Bahn - Germany

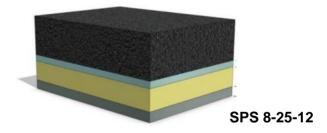
Existing Bridge

- Curved ballast plates are thinned
- Fatigue cracks developing from above
- Riveted steel construction

SPS Solution

- Create SPS composite in-situ from below using existing deck plates as one faceplate
- Fast, simple and non-intrusive
- No downtime No public inconvenience
- Retains historical look
- Quietens bridge: -3dB
- Fatigue life increased by 100 times

Deck strengthening - Mafang Bridge - China

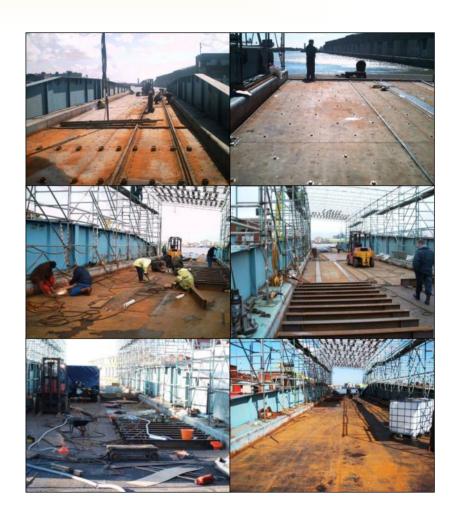

Existing Bridge

- Steel orthotropic bridge deck (1984)
- 14 64ft long spans, total length is 920ft
- 2 lanes, 9m wide

SPS Overlay

- 36 cavities, 510m²
- 10 day project
- Traffic flow maintained at all times
- Load tests confirmed fatigue life extension

Deck strengthening - Huskisson Swing Bridge - UK



Existing Bridge

- 2 lane port swing bridge
- Original steel orthotropic deck
- Strengthening required to carry heavier excavators (85 tonnes)
- Only access to busy scrap depot

SPS Overlay

- SPS 6-25-Existing Overlay applied across full bridge
- 300m² in 9 days (1 day early)
- Asphalt wearing surface
- Selected over conventional steel and modern carbon fibre strengthening

SPS Bride Decks

Summary

- Complete structural bridge deck solution for new or replacement decks as well as orthotropic deck strengthening
- Alternative concrete, grating and orthotropic decks
- Lighter deck
- Lighter superstructures and substructure
- Faster installation with less weather risk
- Options for complete bridge lifts and other alternate/accelerated build schemes
- Adaptable to different bridge types
- Easy to design with excellent dimensional control and quality
- Readily incorporated into current schemes and construction practices
- Proven, approved and tested solutions

Ideal for bridge projects: demanding structures and schedules

bridge deck renovations

orthotropic deck strengthening and life extensions

SPS Bridge Decks

Intelligent Engineering (UK) Ltd

Shire House, West Common

Gerrards Cross

Buckinghamshire SL9 7QN

United Kingdom

Tel: +44 1753 890575

Fax: +44 1753 899056

Intelligent Engineering (Canada) Ltd

14 Chamberlain Avenue (Suite 300)

Ottawa

Ontario

Canada K1S 1V9

Tel: +1 613 569 3111

Fax: +1 613 569 3222

Intelligent Engineering (USA) Ltd

P O Box 3221

Shawnee

Kansas

United States of America 66203

Tel: +1 913 981 3125

SPS Overlay Asia Pte Ltd SPS Marine Technologies Ltd

460 Alexandra Road #34-04A

PSA Building

Singapore 119963

Tel: +65 6513 2782

Fax: +65 6513 2784

Intelligent Engineering (Middle East) Ltd

PO Box 215262

Dubai

United Arab Emirates

Tel: +971 5045 66915

enquiries@ie-sps.com

www.ie-sps.com

